appinternalicon-talk
Description

Ritesh Sachan1, Jagdish Narayan2, Jordan Hachtel3, Juan Carlos Idrobo3; 1Oklahoma State University, 2North Carolina State University, 3Oak Ridge National Laboratory

We report the spectroscopic demonstration of the shallow-level energy states in the recently discovered B-doped Q-carbon Bardeen-Cooper-Schrieffer (BCS) high-temperature superconductor. The Q-carbon is synthesized by ultrafast melting and quenching, allowing for high B-doping concentrations which in- crease the superconducting transition temperature (Tc) to 36 K (compared to 4 K for B-doped diamond). The increase in Tc is attributed to the increased density of energy states near the Fermi level in B-doped Q-carbon, which give rise to superconducting states via strong electron-phonon coupling below Tc. These shallow-level energy states, however, are challenging to map due to limited spatial and energy resolu- tion. Here, we use ultrahigh energy resolution monochromated electron energy-loss spectroscopy (EELS), to detect and visualize the newly formed shallow-level energy states (vibrational modes) near the Fermi level (ranging 30e100 meV) of the B-doped Q-carbon.
Tags